

Novel Small Molecule EPHB3 Inhibitors to Treat Neurodegenerative Disease by Targeting Astrocyte-Mediated Disease Mechanisms

Evan Lebois, PhD

International Conference on Alzheimer's and Parkinson's Diseases and Related Neurological Disorders

April 1 - 5, 2025 | Vienna, Austria

#ADPD2025 | adpd.kenes.com

No, Nothing to disclose

X Yes, please specify

Company / Name	Honoraria / Expense	Consulting / Advisory Board	Funded Research	Royalties / Patent	Stock Options	Ownership / Equity Position	Employee	Other (Please specify)
Evan Lebois, Violet Therapeutics					X		Х	

EPHB3 is an astrocyte receptor tyrosine kinase that facilitates interactions with microglia to drive neuroinflammation

Therapeutic Hypothesis: EPHB3 inhibition will promote neuron health by blocking astrocyte-microglia interactions that drive neuroinflammation

Construction of EPHB3 astrocyte activation score and in silico mapping to human disease and mouse model datasets

CONFIDENTIAL | 5

Target ID

RABID-seg identified EPHB3 activation in astrocytes as neuroinflammation driver in FAF

Target signature

162 transcriptional changes that occur in Astrocytes when EPHB3 is activated

Mine human and mouse data sets

Bulk and scRNA-seq datasets are mined for target signature

Indication and mouse model selection

Target signature is found in human disease and mouse model data sets

Aim = map EPHB3 activation to:

- human disease data sets for indication relevance
- 2. in vivo mouse model data sets for therapeutic development

EPHB3 activation is highly co-localized and correlated with Aβ plaque-induced gene (PIG) response in AD, revealed by spatial transcriptomics

Astrocytes Oligodendrocytes

Microglia

Neurons (Glu)

Neurons (GABA)

EPHB3 activation is highly colocalized with Aβ plaque-induced genes

Key Takeaways:

- Astrocyte and MG gene expression altered around Aβ plaques
- This drives neuroinflammation
- EPHB3 activation happens in the same place

EPHB3 activation scores in astrocytes are markedly elevated in RNA-seq data from three amyloidosis mouse models, as well as LPS and EAE models

Highly selective, brain penetrant tool compound VT-001 shows robust pharmacology and in vivo efficacy in ICV LPS assay

8

Drug-like small molecule with excellent selectivity

	Selected assay/ Target	VT-001		
Properties	CNS MPO ¹	5		
	Kinetic solubility (7.4, uM)	192		
	MW, cLogD	<410, <1		
	PPB % unbound (m, r, d, c, h)	64, 71, 65, 61, 51		
Biochemical	EphB3 (IC50, uM)	0.048		
	Carna NanoBRET (196 kinases)	1/240 (EPHB3)		
Kpuu	Rat	40%		
In vitro tox	CYPs	< 50% @ 10uM		
	hERG	37% @ 10uM		
	SafetyScreen44	1/44 (3 μM AChE)		

^{1.} CNS MPO: combination of cLogp/ cLogD/ MW/ TPSA/ HBD/ pKa

Neuroinflammatory reduction in mouse LPS model greater than positive control

^{2.} ER – extraction ratio. Predicted Clp/hepatic blood flow; in vivo Clp/ hepatic blood flow

VT-001 significantly rescues clinical EAE score deficits in mice

CONFIDENTIAL / 9

Dosing initiated at peak EAE

Dosing initiated at first detectable EAE symptoms (EAE score = 1)

EAE scRNA-seg studies to reveal VT-001 mechanism of action (MOA)

CONFIDENTIAL / 10

Are experimental groups different from one another?

> **How** are experimental groups different?

Identify clusters that differentiate EAE and VT-001 groups:

Differentially expressed gene (DEG) analysis and clustering of astrocyte scRNA-seq data

Attach biological function to these clusters:

- What clusters are associated with VT-001 treatment effects?
- Of these, which clusters are associated with: EAE induction, EPHB3 activation, and neuroinflammatory gene expression?

Clusters

32

VT-001 rescues expression of pro-inflammatory and reactive astrocyte signature gene sets in astrocytes

CONFIDENTIAL / 11

scRNA-seq in EAE spinal cord shows, in astrocytes, VT-001 decreases EPHB3 activation scores, proinflammatory, and reactive astrocyte gene expression signatures

Global proteomic analysis of spinal cord reveals VT-001 treatment reduces inflammation and restores neuronal signaling pathways

CONFIDENTIAL / 12

Using global proteomics, the top upregulated protein pathways by VT-001 treatment were synaptic signaling pathways and top suppressed pathways are immune pathways

VT-001 rescues cognitive deficits and Aß plaque-induced gene (PIG) expression signature in cortex of 5xFAD mice

CONFIDENTIAL / 13

2-month treatment

5xFAD 5xFAD 5xFAD

Vehicle Vehicle VT-001

Reduced astrocyte and microglia Aß plaqueinduced gene expression in cortex (scRNA-seq)

Aβ plaque induced gene (PIG) response

Study Timeline

Day 6 Mean Latency

50 -

40

20

10

MWM **Drug treatment EPM Tissue** Study Time: t₀ 2 mos Mouse Age: 6.5 m/o 8.5 m/o

Astrocytes in 5xFAD mice have increased plaque inflammatory response

• Inflammation local to Aβ plaques damaging to neurons that represents pathogenic astrocyte-microglia crosstalk

VT-001 attenuates astrocyte and microglia inflammatory response

Conclusions and next steps

Overall Conclusion: VT-001 is highly efficacious in vivo in LPS, EAE, and 5xFAD models

- 1. LPS
 - ✓ VT-001 robustly attenuates LPS-evoked IL-1β release to WT levels (MSD)
- 2. EAE
 - ✓ Spinal cord gliosis and reactive astrocyte gene signatures attenuated by VT-001 (scRNA-seq)
 - ✓ Rescue of neuronal signaling pathways and inhibition of immune response pathways (proteomics)
- 3. 5xFAD
 - ✓ Significant Aβ PIG expression in cortex astrocytes and microglia attenuated by VT-001 (scRNA-seq)

Next Steps

- 1. 5xFAD follow-up studies
 - Neurohistology to characterize VT-001 efficacy at molecular level
 - Spatial transcriptomics to establish VT-001 MOA local to Aβ plaque pathology
 - Fluid and tissue proteomics to identify VT-001 biomarkers
- 2. PS19 study to test VT-001 efficacy in setting of tauopathy

Francisco Quintana, PhD
Founder, C-to-C Map Inventor
Distinguished Professor of Neuroimmunology, Brigham & Women's Hospital, Harvard Medical School
Founder of ImmunArray, Alma Bio, AnTolRx

Michael Wheeler, PhD

Advisor, C-to-C Map Inventor

Asst. Professor of Neurology, Brigham & Women's Hospital,
Harvard Medical School

Paul Sekhri
Executive Chair
Chair BOD Longboard, CEO vTv
Therapeutics and eGenesis,

Meredith Fisher, PhD
Founding CEO
Partner, Mass General Brigham
Ventures

CSO
Previously Medchem/Drug Discovery at Sonata, Caraway, Quartet Medicine, Svros

Darby Schmidt, PhD

C. Dilip Kodira, MS

VP, Platforms & Analytics

Previously Data Science at PureTech,
GE, Roche, Broad Institute, Celera

Evan Lebois, PhD
Senior Director of Biology
Previously R&D at Nido, Broad Institute,
Pfizer

Robert Hubbard, PhD
Head of Medicinal Chemistry
Operator in Residence, MGB Amplify
Fund,
Previously at Vividion, Celgene

